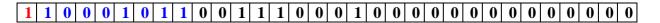
Architecture

```
Méthode de la virgule flottante :
Par ex -5000
-5000
1001110001000
0110001110111 (complément restreint = inversion des nombres)
On rajoute tout simplement 1 au complément restreint
             1
Soit
0110001111000
Mantisse
<u>Calcul des nombres et Decomposition :</u>
5.25d soit 5 + 0.25
0.25 > 0
0.50 > 0
1.00 > 1
Soit 0.01
Le nb entier fait donc 101.01 (Ecriture scientifique : 1.0101 * 2^2)
127+2 = 129 \text{ donc } 10000001
1<sup>er</sup> bit : bit de signe (0 positif et 1 pour negatif)
2<sup>ème</sup> à 9<sup>ème</sup> bit (puissance de 2 sur 8 bit)
10<sup>ème</sup> à 32<sup>ème</sup> bit (mantisse sur 23 bit = partie decimal, concerne également nombre
negatif)
13.375d soit 13 + 0.375
0.375 > 0
0.750 > 0
1.500 > 1
1.000 > 1
Soit 0.011
Le nb entier fait donc 1101.011 (Ecriture scientifique : 1.1010111 * 2^3)
127+2=130 donc 10000010
0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.3d \text{ soit } 0 + 0.3
0.3 > 0
0.6 > 0
1.2 > 1
0.4 > 0
0.8 > 0
1.6 > 1
1.2 > 1
etc
Le nb fait donc 0.010011... (Ecriture scientifique : 1.001100110011001100110011... * 2^-2)
127-2=125 donc 01111101
         1 0 0 1 1 0 0 1
```


Si nombre négatif:

Par ex -5000 1001110001000

Soit 1.001110001000 * 2^12

Donc 127 + 12 = 139

10001011

CHAP Contrôle intégrité

Contrôle intégrité ECC

1 octet (8 bit)

Bloc de donnée							Code ECC						
1	0	1	0	0	0	0	1	0	1	0	1	0	1

Faire de même sur les 3 autres bits

2 octet (16bit)

Ī	Bloc de donnée									С	ode	EC	C									
	0	1	1	1	1	0	1	0		1	0	1	1	1	0	0	1	1	1	0	0	0

Faire de même sur les 4 autres bits

Contrôle d'intégrité CRC

Voir polycopie

CHAP Transmission des données

@Mac sur 6 octets (adresse physique et unique)

@IP sur 4 octets (adresse logique) constitué en 2 parties : idR (réseau) et idH (Hôte)

Classe d'adresses:

Classe	idR	idH	Plage @	Nb Réseau	Nb Hôte
					2^24 - 2 = 16 777
Α	8 bits	24 bits	0 - 127	2^7 - 2 = 126	214
В	16 bits	16 bits	128 - 191	$2^14 - 2 = 16384$	2^ 16 - 2 = 65 534
				$2^21 - 2 = 20971$	
С	24 bits	8 bits	192 - 223	150	$2^8 - 2 = 254$
D			224 - 239		
Е			240 - 254		

Avec pour @IP réseau privée (lan):

A	10.0.0.1	10.255.255.255
В	172.16.0.1	172.31.255.255
С	192.168.0.1	192.168.255.255

Masque par défauts :

A:/8 B:/16 C:/24

Exercice1:

Donner l'@IP du réseau correspondant (noté en CIDR) + son masque de sous réseau

Plage Adresse	Classe	Adresse Réseau	Masque sous réseau
a) 172.16.80.1 – 172.16.87.254	В	172.16.80.0 /21	255.255.248.0
b) 10.1.64.1 - 10.1.127.254	Α	10.1.64.0 / 18	255.255.192.0
c) 210.44.8.81 - 210.8.8.94	С	210.44.8.80 /28	255.255.255.240

a) classe B donc 16 bits reservé 80.1 87.254

0101 0000 . 0000 0001 0101 0111 . 1111 1110 Donc 16+5 soit 21 bit (/21)

Pour avoir l'adresse réseau, on met le reste des bits à 0 0101 0000 . 0000 0000 ce qui nous donne 80.0 Soit l'adresse réseau 172.16.80.0 /21

Pour avoir le masque de sous réseau, on passe toute la partie rouge avec des bits à 1 et le reste avec des 0 soit :

1111 1000 . 0000 0000 ce qui nous donne 248.0 Soit le masque sous réseau suivant 255.255.248.0

b) classe A donc 8 bits réservé 1.64.1 1.127.254

0000 0001 . 0100 0000 . 0000 0001 0000 0001 . 0111 1111 . 1000 1110 Donc 8+10 soit 18bit (/18)

0000 0001 . 0100 0000 . 0000 0000 soit 1.64.0 10.1.64.0 / 18

1111 1111 . 1100 0000 . 0000 0000 soit 255.192.0 255.255.192.0

c) classe C donc 24 bits réservé 81 94

0101 0001 0101 1110

Donc 24+4 soit 28bit (/28)

0101 0000 soit 80 210.44.8.80 /28

1111 0000 soit 240 255.255.255.240

Exercice2:

Donner @Réseau + Nb Hotes/Réseau + @diffusion (broadcast)

Adresse	Classe	Réseau	Hotes/Réseau	Adresse diffusion
a) 164.2.34.35 /27	A	164.2.34.34	30	164.2.34.63
b) 101.2.3.18 /16	В	101.2.0.0	65534	101.2.255.255
c) 210.222.5.121 /29	С	210.222.5.120	6	210.222.5.127

```
Donc 2^5 -2=30
2.34.35 /27
0000 0010 . 0001 1111 . 0010 0011
0000 0010 . 0001 1111 . 0010 0000 soit 2.34.32
0000 0010 . 0001 1111 . 0011 1111 soit 2.34.63 (on passe le reste des bits à 1)
164.2.34.34
164.2.34.63
classe B donc 16 bits réservé
32-16 = 16
Donc 2^16 - 2 = 65534
3.18 /16
(la partie rouge n'est pas visible car dans idR)
0000 0011 . 0001 0000
0000\ 0000\ .\ 0000\ 0000\ soit\ 0.0
1111 1111 . 1111 1111 soit 255.255
101.2.0.0
101.2.255.255
c)
classe C donc 24bit réservé
32-29 = 3
Donc 2^3 - 2 = 6
121/29
0111 1001
0111 1000 soit 120
0111 1111 soit 127
210.222.5.120
210.222.5.127
Exercice 3:
@IP: 214.123.115.0
Créer 10 réseaux distincts pour 10 succursales avec cette IP
1 - Masque?
2 – Nb @IP pour chaque sous réseau?
3 - @ diffusion pour 5<sup>ème</sup> sous réseau utilisable?
4- Nb @IP distinctes est-il possible avec un tel masque?
1)
Classe C donc 24bit réservé
32-24 = 8
2^8 - 2 = 254 Hotes
1101 0110 . 0111 1011 . 0111 0011. 0000 0000
Masque par défauts : 255.255.255.0
2^4 - 2 = 14 qui est le plus proche de 10.
Soit un decoupage adapté comme ceci : 214.123.115.0 /28 (24+4)
1101 0110 . 0111 1011 . 0111 0011. 1111 0000 soit 255.255.255.240
2)
Bit le plus haut = 16
16
32
48
64
80
```

96

On a donc bien 14 Hotes/succursales disponibles

3) 214.123.115.80 soit 0101 0000 214.123.115.95 soit 0101 1111

4) 2^(28-24) = 16SR 2^(32-28) = 14H/SR

Nb H Maxi = 14*16 = 224

CHAP Stockage de donnée

Calcul nb secteur = 0.5ko/secteur Par exemple un DD de 500GO. (500*2^30)/(2^9)=1000mega soit 1Go/secteur

Fragmentation:

1 secteur = 512

Soit:

1 > 512

2 > 1024

4 > 2048

8 > 4096

16 > 8192

32 > 16384

64 > 34768

Pour calculer la taille des clusters, il suffit de multiplier en fonction de la taille du fichier (tj supérieur à la taille du fichier, et le plus rapproché possible)

Liste des	fichiers	Tailles des clusters			
Fichier	Taille	2048	32768		
Α	646	2048	32768		
В	4224	6144	32768		
С	6400	8192	32768		

Ensuite pour avoir le taux de fragmentation, il faut faire le rapport entre **l'espace non utilisé / espace attribué**

Soit : Total Cluster X1 – Taillle total fichier / Total Cluster X1

Secteur boot:

FAT12 > 12bit pour chaque numero de cluster

FAT16 > 16bit

FAT32 > 32bit

Descriptif	octet
Instruction de saut	3
Nom et version OEM (constructeur en texte)	8
Nb octet par secteur	2

Nb secteur par unité allocation (cluster)	1
Nb secteur réservé	2
Nb de table allocation (FAT)	1
Taille du repertoire principal	2
Nb secteur sur le volume (petit nombre)	2
Descripteur du disque	1
Taille des FAT en nb de secteur	2
Nb de secteur par piste	2
Nb de têtes	2
Nb de secteur cachés	4
Numero du disque	4
Tete en cours (inutilisé)	1
Signature	1
Numero serie du volume	4
Nom du volume	11
Type de FAT (FAT12,FAT16)	8
Code amorçage	448
Marqueur de fin de secteur	2

Ensuite par rapport au fichier hexadecimal, tj inverser les nombres.

Par exemple 0485 donnera 8504

Le directory (repertoire):

Descriptif	octet
Partie principale du nom en texte	8
Extension du nom en texte	3
Attribut du fichier	1
Reservé par MSDOS	10
Heure de la dernière ecriture	2
Date de la dernière ecriture	2
Première unité d'allocation du fichier	2
Taille du fichier en octet	4

Heure de dernière ecriture sur 2 octet

Par ex : 404E

4^E40 soit **0100 1110 0100 0000**

 $H > 2^5 = 32 (24h \text{ max})$

 $M > 2^6 = 64 (60 \text{ min max})$

 $S > 2^5 = 32$ (moitié du nombre de seconde)

Soit 9h50

Date de dernière ecriture sur 2 octet

Par ex: 181F

1F18 soit **0001 1111 0001 1000**

 $A > 2^7 = 128$ (compter depuis 1980)

 $M > 2^4 = 16 (12 \text{ mois max})$

 $J > 2^5 = 32$ (31 jours max)

Soit le 24 aout 1995 (1980+15)

Taille d'allocation:

0000 > cluster libre

FFFF > cluster occupé

Par ex:

0003 0004 FFFF 0006 0008 FFFF FFFF

Les FFFF annonce en même temps le cluster suivant (nombre pas forcément à la suite dans le mm cluster)